6 research outputs found

    Modelling and simulation of hollow profile aluminium extruded product

    Get PDF
    The main objectives of this paper is to find the way for solving the problems of aluminum extrusion process, and improve the mechanical properties of the products through a smart design, modelling and simulation of this process by using finite element method (FEM). For the purpose to model a (2D) two dimensions warm aluminum extrusion process, ABAQUS software was used to set up the finite element simulation. The main parameters which have major effects on this process like extrusion stresses, temperature, and die geometry, i.e. extrusion radius, were taken into consideration. Aluminum alloy (Al-2014) was used as the billet material, with 40 mm diameter and 75 mm length. It is important to preheat the billet from the beginning to a specific temperature, and then pressurizes it into the die. This process is an isothermal process with an extrusion ratio of 3.3. Subsequently, the optimized algorithm for these extrusion parameters was suggested based on the simulation results. The results suggest that the large die angle needs a less extrusion load than the small die angle. In all die geometry used, the deformation of aluminum billet, which caused by shearing and compression stresses, happened in a small sectional area, i.e., bearing area. The results also showed that the values of these stresses can increase or decrease depends on the die entrance angle and the die bearing length. To avoid the effects of these stresses on die dimensions; the hardness, material selection, and geometry should be well calculated

    Enhancement and improvement of the mechanical properties of aluminum extruded products by mathematical analysis and simulation process

    Get PDF
    This paper investigates a technique for solving the problems of the aluminum extrusion process, and improving the mechanical properties of the products produced by this method through a smart design, simulation and Mathematical Analysis by using F.E.M. For this purpose, the general F.E.A. Software ABAQUS was used to set up the finite element model of the warm aluminum extrusion in two dimensions (3D). Also, an iterative procedure was carried out using MATLAB at each iteration. The model was formulated as a nonlinear model. The inputs to this model were: the product geometry and its materials specifications such as density, rigidity, elasticity, thermal conductivity, and the required analytical steps. An axisymmetrical (3D) geometric model of the tooling and billet was constructed for the analysis. Data obtained from the F.E model included die-work piece contact pressure, effective stress and strain and material deformation velocity. The correlation between the calculated and collected data from (FEA) was established in this research. Then the billet and die stresses, temperature and the ram speed that closely matched with the strain rates for the desired quality were obtained

    Modeling and simulation of forward Al extrusion process using FEM

    Get PDF
    The main objective of this paper is to study the effect of extrusion parameters (extrusion stresses and temperature) and die geometry, i.e. extrusion radius, on the extruded aluminum quality using FEM Simulation Technique. For this purpose, the general FEA Software ABAQUS was used to set up the finite element model of the warm aluminum extrusion in two dimensions (2D). Aluminum alloy Al-2014 was used as billet material, with 40mm diameter and 75mm length. The extrusion process was modeled as isothermal, which means that the billet material was preheated at a specific temperature and then pressured into the circular die, with extrusion ratio 3.3. Optimized algorithms for extrusion parameters were proposed regarding the concluded simulating results. The results showed that small die angles required higher extrusion load than large die angles. In all die geometry used, the deformation of aluminum billet, which is caused by shearing and compression stresses, happened in a small sectional area (bearing area). The results also showed that, the values of these stresses can increase or decrease depending on the die entrance angle and the die bearing length. To avoid the effects of these stresses on die dimensions; the hardness, material selection, and geometry should be well calculated. An axis-symmetrical 2D geometric model of the tooling and billet was constructed for the analysis. Data obtained from the FE model included die-work piece contact pressure, effective stress and strain and material deformation velocity. The correlation between the calculated and FEA data was obtained in this research

    Modeling and Analysis Techniques for Solving Mechanical Pipe Sticking Problems in Drilling Equipment

    No full text
    Mechanical pipe sticking is the important reasons which has a direct impact on the drilling process efficiency. The problems of pipe sticking during drilling, and the other problems associated with this case is a crucial task that must be early identified to find the causing factors before any further action. The main objectives of this study are to predict and specify the main causes of these problems through modeling and simulation processes. Consequently, the (ANSYS Workbench/2019 R3) Commercial version has been adopted for this analysis purposes. This analysis have been carried out based on the actual interaction and contact between the active working parts to simulate the actual process. In this simulation process, the non-deformable parts like drill pipe, and wellbore sleeve are considered (Masters), while deformable parts are (slaves). Simulation results approved that the pipe stick happened due to high values of generation stresses. The plot of maximum induced stresses shows that the generated stresses in the interaction zone between the outer surface of the drilling pipe and mud are (15) % more than in the other zones. Also, the probability of sticking during drilling can be predicted according to the relation between the drill depth with time and drag forces. It’s concluded that for freeing the stuck pipe it’s very necessary to predict the problems from the beginning. This type of analysis can assure the percentage accuracy for stuck pipe prediction is more than (70) %

    Die system design with finite element for improving mechanical performance of extruded aluminium alloys and composites

    Get PDF
    Aluminum extrusion is a forming process to produce a large variety of products with different and complex cross-sections. Understanding of the mechanics of aluminum extrusion process is still limited. It is necessary to improve the tools geometry in such a way that the extruded aluminum profile complies with high customer demands regarding to surface quality and dimensional accuracy. The extrudability of some aluminum alloys,specially the aluminum metal matrix composites (AMMCs) and their behavior and properties after extrusion process need to be improved. The objectives of this work are to improve the mechanical properties, accuracy and surface quality of aluminum extruded parts and composite extruded parts based on the selected parameter settings. Improvement was accomplished theoretically and experimentally through a completed series of steps, starting with designing all the required tools including group of die inserts with different geometrie and extrusion rates, followed by fabrication of all these inserts with a completed tool sets for experimental purposes. Finite element analysis and simulation method was utilized in this research to determine the optimum values of parameters before carrying out the experimental test. This ensures reducing the time for the trial and error, and gives more insight in the extrusion process and enhances the consistency of the results. The empirical part of this research includes a series of experimental tests for three types of alloys; aluminum alloy LM6, composite aluminum LM6/TiC, and aluminum alloy L168 as a hard alloy for comparison purpose. The aim is to assess the extrudability of composite alloy and their mechanical properties for each material after the process, and to identify the parameters that have a significant effect on mechanical properties. Experimental results show that, the product quality is dependent on the extrusion angle, die hardness, extrusion speed, temperature difference between tools and the billet, extrusion force and billet container length. The laboratory tests followed the experiments, like tensile and hardness tests, which gave indication of significant improvement of the mechanical properties after extrusion. Microstructure test, by Scanning Electron Microscope (SEM) and Energy Dispersive X- Ray Spectrometer (EDS) show a good improvement in parts micro-structures and grain size boundary layers after extrusion process. Both experimental and analytical results show a good indication of the possibility of extrusion of these alloys at different rates with good mechanical properties in both cold and hot extrusions. Moreover, one of the important contributions of this research is solving the sticking problem between the product with the die and container after extrusion, which leads to a high deformation during the product removal. This problem was studied and solved by design system which takes all these factors and variables into consideration

    Аналіз основних факторів, що впливають на масове виробництво в процесі лиття пластмас з використанням методу кінцевих елементів

    No full text
    Plastic injection molding is widely used in many industrial applications. Plastic products are mostly used as disposable parts or as portable parts for fast replacements in many devices and machines. However, mass production is always adopted as an ideal method to cover the huge demands and customers’ needs. The problems of warpage due to thermal stresses, non-uniform pressure distribution around cavities, shrinkage, sticking and overall products quality are some of the important challenges. The main objective of this work is to analyze the stress distribution around the cavities during the molding and demolding to avoid their effects on the product quality. Moreover, diagnosing the critical pressure points around and overall the cavity projection area, which is subjected to high pressure will help to determine the optimum pressure distribution and ensure filling all cavities at the same time, which is another significant objective. Computer-aided design (CAD) and CATIA V5R20 are adopted for design and modeling procedures. The computer-aided engineering (CAE) commercial software ABAQUS 6141 has been dedicated as finite element simulation packages for the analysis of this process. Simulation results show that stress distribution over the cavities depends on both pressure and temperature gradient over the contact surfaces and can be considered as the main affecting factor. The acceptable ranges of the cavity stresses were determined according to the following values: the cavity and core region temperature of 55–65 °C, filling time of 10–20 s, ejection pressure 0.85 % of injection pressure, and holding time of 10–15 s. Also, theoretical results reveal that the uniform pressure and temperature distribution can be controlled by adjusting the cavities layout, runner, and gate size. Moreover, the simulation process shows that it is possible to facilitate and identify many difficulties during the process and modify the prototype to evaluate the overall manufacturability before further investing in tooling. Furthermore, it is also concluded that tooling iterations will be minimized according to the design of the selected processЛитье пластмасс под давлением широко используется во многих отраслях промышленности. Изделия из пластика в основном используются в качестве одноразовых или портативных деталей для быстрой замены во многих устройствах и машинах. Однако массовое производство всегда рассматривается как идеальный метод удовлетворения огромных требований и потребностей клиентов. Одними из основных проблем являются деформации из-за термических напряжений, неравномерное распределение давления по полостям, усадка, прилипание и общее качество изделий. Основной целью данной работы является анализ распределения напряжений вокруг полостей во время формования и извлечения из формы для устранения их влияния на качество продукции. Кроме того, диагностика критических точек давления вокруг и в целом области выступа полости, которая подвергается воздействию высокого давления, позволяет определить оптимальное распределение давления и одновременно обеспечить заполнение всех полостей, что является еще одной важной задачей. Для проектирования и моделирования используются системы автоматизированного проектирования (САПР) и CATIA V5R20. Для анализа этого процесса, было разработано коммерческое программное обеспечение автоматизированного проектирования (CAE) ABAQUS 6141 в качестве пакетов моделирования методом конечных элементов. Результаты моделирования показывают, что распределение напряжений по полостям зависит как от давления, так и от градиента температуры по контактным поверхностям и может рассматриваться как основной влияющий фактор. Допустимые диапазоны напряжений в полости определялись по следующим значениям: температура полости и области сердцевины 55 –65 °C, время заполнения 10–20 с, давление выталкивания 0,85% от давления литья и время выдержки 10–15 с. Кроме того, теоретические результаты показывают возможность управления равномерностью распределения давления и температуры путем регулирования расположения полостей, размера литника и затвора. Более того, процесс моделирования показывает, что для оценки общей технологичности перед дальнейшими инвестициями в оснастку возможно выявить и облегчить многие трудности в процессе и модифицировать прототип. Кроме того, можно сделать вывод, что количество итераций оснастки будет сведено к минимуму в соответствии со схемой выбранного процессаЛиття пластмас під тиском широко використовується в багатьох галузях промисловості. Вироби з пластику в основному використовуються в якості одноразових або портативних деталей для швидкої заміни в багатьох пристроях і машинах. Однак масове виробництво завжди розглядається як ідеальний метод задоволення величезних вимог і потреб клієнтів. Одними з основних проблем є деформації через термічні напруження, нерівномірний розподіл тиску по порожнинах, усадка, прилипання та загальна якість виробів. Основною метою даної роботи є аналіз розподілу напруг навколо порожнин під час формування та вилучення з форми для усунення їхнього впливу на якість продукції. Крім того, діагностика критичних точок тиску навколо і в цілому області виступу порожнини, яка піддається впливу високого тиску, дозволяє визначити оптимальний розподіл тиску і одночасно забезпечити заповнення всіх порожнин, що є ще одним важливим завданням. Для проектування та моделювання використовуються системи автоматизованого проектування (САПР) та CATIA V5R20. Для аналізу цього процесу, було розроблено комерційне програмне забезпечення автоматизованого проектування (CAE) ABAQUS 6141 в якості пакетів моделювання методом кінцевих елементів. Результати моделювання показують, що розподіл напруг по порожнинах залежить як від тиску, так і від градієнта температури по контактних поверхнях і може розглядатися як основний фактор впливу. Допустимі діапазони напруг в порожнині визначалися за такими значеннями: температура порожнини та області серцевини 55–65 °C, час заповнення 10–20 с, тиск виштовхування 0,85% від тиску лиття і час витримки 10–15 с. Крім того, теоретичні результати показують можливість управління рівномірністю розподілу тиску і температури шляхом регулювання розташування порожнин, розміру литника та затвора. Більш того, процес моделювання показує, що для оцінки загальної технологічності перед подальшими інвестиціями в оснащення можливо виявити і полегшити багато труднощів в процесі та модифікувати прототип. Крім того, можна зробити висновок, що кількість ітерацій оснащення буде зведено до мінімуму відповідно до схеми обраного процес
    corecore